Intermittent renewables have different system cost characteristics than dispatchable plants

Key aspects	Reasoning
A Intermittency	 "Not all MWh are created equal – timing matters" In periods of low residual demand, low power prices reflect that generation is of less value to the system –LCOE metrics implicitly assume that every MWh is equally valuable
B Balancing cost	 "Does it deliver exactly when and what it says it will?" Deviations from production schedules create imbalances and balancing costs More intermittent renewables require larger reserves to balance deviations
c Grid expansion	 "How does the power get to where it is needed?" Capacity additions that are not aligned with demand require grid congestion management and expansions of transmission and distribution grids
D Heat (CHP only)	 "Can I get free heat out of my plant?" CHP plants produce heat as a by-product; closing them requires substitution investments (e.g. gas/biomass boilers, power-to-heat with additional power generation capacities)